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ABSTRACT

While musical gestures have been mapped to control syn-
thesizers, tracked or recognized by machines to interact
with sounds or musicians, one may wish to continue them
automatically, in the same style as they have been initiated
by a performer. A major challenge of musical gesture con-
tinuation lies in the ability to continue any gesture, without
a priori knowledge. This gesture-based sound synthesis,
as opposed to model-based synthesis, would open the way
for performers to explore new means of expression and to
define and play with even more sound modulations at the
same time.

We define this new task and address it by a baseline con-
tinuation system. It has been designed in a non-parametric
way to adapt to and mimic the initiated gesture, with no
information on the kind of gesture. The analysis of the re-
sulting gestures and the concern with evaluating the task
raise a number of questions and open directions to develop
works on musical gesture continuation.

1. THE PROBLEM OF MUSICAL GESTURE
CONTINUATION

1.1 Musical gesture

From traditional acoustic instruments to modern electronic
musical interfaces, gesture has always been a central prob-
lematic in musical performance. While acoustic instru-
ments have to be continuously excited by energy impulsed
by the performer’s gestures, electronic instruments pro-
duce sounds without any mechanical input energy, which
can last as long as electricity flows. In such electronic
instruments, gestural interfaces have been used to control
sound synthesis parameters. In [1], electronic instruments
are defined by two components — the gestural controller
and the sound production engine — and by the mapping of
parameters between them.

The electronic performer can now deal with multiple lay-
ers of sound, mixed together as tracks on traditional dig-
ital audio workstation. Even if gestural control can be at
a high level in the music system architecture — e.g., on
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a mixing desk —, we often use several electronic instru-
ments with performance-dedicated control strategies and
interfaces. As they can’t necessarly be played simultane-
ously, here comes the idea to design a system that contin-
ues a gestural behavior, primarily inputed by the performer
on a particular instrument, and then automatically contin-
ued, while the performer can focus on other instruments.
Another motivation of such systems is the ability to de-
fine complex sound parameter modulations by gesture.
From very simple Low Frequency Oscillators to chaotic
systems, modulation methods are often parametric. One
can use simple periodic/stochastic function or linear com-
bination of these functions. This leads to very complex and
rich results in terms of dynamics and movements but with
a real pain on tweaking parameters. Indeed, these systems
propose a lot of parameters, with complex interactions,
making them really difficult to control intuitively. The idea
to define modulation by gesture comes quite straightfor-
ward. Such a data-driven approach, as opposed to model-
based parametric systems, leads to a system that could an-
alyze an input gesture by means of its temporal and spatial
characteristics, and then continue it a la maniére de.

1.2 Problem characterization

Let us imagine an electronic instrument controlled by a tac-
tile tablet. Consider gestures as isolated 2D strokes related
to the contact of a finger on that tablet. An example of such
a gesture is represented in black in Figure 1, together with
a possible continuation of this gesture, in gray. This setting
will be used throughout the proposed study and extensions
to other settings will be discussed.

— Recorded gesture
Continued gesture
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Figure 1. Example of a continuation (gray) of a performed 2D gesture
(black). Space is on the x and y axes while time is on the z axis.
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We can formalize the problem with a traditional machine
learning scheme composed of a learning phase (user per-
forming the gesture) followed by a predicting phase (ma-
chine continuing the gesture). A gesture is a sequence of
positions p (¢) € R? in cartesian coordinates for a single
finger recorded at N discrete times ¢ with 1 < ¢ < N. The
goal of gesture continuation is to extrapolate a given ges-
ture by generating the positions after the end of the avail-
able recording, i.e., to estimate p (¢) at times ¢ > N.

The key issue is to study to which extent one may con-
tinue any gesture, with no a priori knowledge on the prop-
erties of the gesture. In particular, we want to avoid any
categorization of gestures that would lead to, e.g., para-
metric models of specific gestures. For instance, we are
not interested in tracking periodic gestures to generate per-
fect loops, since the musical result would be too simplistic
and is already well-used by say live-looping techniques, or
to have a predefined list of allowed gesture patterns, which
would dramatically reduce the performer’s freedom. On
the contrary, one may want, for instance: to capture the
variability in the gesture of the performer, including when
it is periodic ; to be able to continue aperiodic gestures
that look like random walks; to reproduce the main char-
acteristics of the gesture, including, at the same time, os-
cillating or random components — even if such structures
do not appear in the sequence of positions, but in the ve-
locity space for instance. Consequently, musical gesture
continuation is not a well-posed problem. This important
aspect should be considered when designing continuation
systems as well as evaluation frameworks in order to keep
in mind the ultimate goal — processing any gesture — and to
avoid excessive simplification of the problem.

1.3 Related tasks

Part of the problem of musical gesture continuation is ob-
viously related with the sound generation and mapping
strategies involved in the electronic instrument in use. In-
deed, gestures are completely dependent on the audio feed-
back, involving the need to study relations between sound
and movement as in [2]. We chose for now to use a fixed
reference electronic instrument, to work in the gesture do-
main only, and to tackle this question in future works.

Gesture continuation differs from other tasks that involve
either gestures or continuation in music. In the gesture
analysis field, gesture recognition [3, 4, 5] relies on ref-
erence gestures that are available beforehand and may be
used to follow and align various media (sound, musical
score, video) in live performance. Such reference gestures
are not available in the generic gesture continuation prob-
lem. In [6, 7], the authors propose a system that can con-
tinue musical phrases and thus improvise in the same style.
It works at a symbolic level (discrete segmented notes or
sounds) and its application to continuous data (ie. gesture
time series) is not straightforward.

1.4 Outline

This paper is organized as follows. In section 2, we pro-
pose a baseline system that has been designed to continue
any arbitrary gesture, in the spirit of the open problem de-
scribed above. A large place is dedicated to the evaluation
of the results in section 3, including questions related to

the evaluation methodology. We finally discuss a number
of directions for this new problem in section 4.

2. A BASELINE SYSTEM BASED ON K-NEAREST
NEIGHBORS REGRESSION

The proposed baseline system for musical gesture continu-
ation is based on a simple regression scheme, as presented
in section 2.1. In order to be able to continue any gesture,
the system relies on the design of feature vectors discussed
in section 2.2. The choice of the prediction function is fi-
nally detailed in section 2.3.

2.1 Overview and general algorithm

The proposed approach relies on the ability, at each time
t > N, to generate the move & (t) € R? from the current
position p (¢) to obtain the nextone as p(t + 1) = p (¢) +
4 (t), by considering the past and current positions

x(t) £ [pt—7°),....,p(t)] (1)
where 7° is a predefined memory length.

The proposed system is depicted in Algorithm 1. It relies
on learning a prediction function (lines 1-7) which is then
used to predict the moves at times t > N (lines 8-13).

At each time ¢ during both learning and prediction, a fea-
ture vector v (t) is computed from the current data point
x (t) (lines 2-3 and 9-10).

The recorded gesture provides examples (v (¢),d (¢)) of
the mappings between a feature vector v (¢) and a subse-
quent move 4 (t) fort € {1+7°,...,N—1}. Such a
training set S is built at line 6. The prediction function fs
is obtained from S at line 7 by a supervised learning step.
Once the prediction function is learned, gesture continu-
ation is obtained in an iterative way for times ¢ > N, by
applying fs to the feature vector v (¢) in order to obtain the
subsequent move (line 11) and the next position p(¢ + 1)
(line 12).

2.2 Feature extraction

In order to be as generic as possible, we consider simple
features based on position, speed and acceleration along
the gesture. Two options are proposed, in sections 2.2.1
and 2.2.2.

2.2.1 Instantaneous features

The simplest option consists in setting the characteris-
tic memory length 7° to 2 so that the point x (¢) =
p(t—2)
p(t—1)
p (1)
three positions. The feature vector is then defined as

considered at time ¢ is composed of the last

p(t)
p(t)—p(t—1)
p(t)—2p(t—1)+p(t—2)

vinst (t) 4L c R67

by concatenating the current position p (¢), the instanta-
neous speed p (¢) — p(¢ — 1) and the instantaneous accel-
eration p (t) — 2p(t — 1) + p(t — 2) computed in a causal
way from point x ().



Algorithm 1 Gesture continuation
Input(s):
recorded gesture (p (t));<,<n
prediction length L
Output(s):
predicted gesture (P (t)) v 1<;<n L

Supervised learning on recorded gesture

cforte {1+7°,...,N—1}do
build point x (¢t) + (p (¢t —7°),...,p (t))
build feature vector v (¢) from x ()
setmove d (1) <~ p(t+1) —p(t)

end for

- build training set S <+ {(v (¢), 8 (¢)) iv:_11+70

. learn regression function fs from S
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Prediction
g: fort € {N,...,N+L—1}do
: build point x (¢) + (p (t — 7°),...,p (t))
10: build feature vector v (¢) from x ()
11 estimate move 6 (t) < fs (v (t))
12: set next position: p (t + 1) < p (t) + 9 (¢)
13: end for

2.2.2 Finite-memory features

Instanteous features may provide insufficient information
to predict the next position, as it will be experimentally
demonstrated (see section 3). An alternative choice is pro-
posed by extending the memory length 7° and by consid-
ering information at J different past lags ¢; in the range
{0,...,7° — 2}. We define the finite-memory feature vec-
tor

J

ymem (t) 2 [vinst (t — tj)]j:o

@)
as the concatenation of several instantaneous feature vec-
tors vi™! (¢ — ¢;) taken at past times ¢ — ¢; within the finite
memory extension. In order to exploit the available in-
formation while limiting the feature vector size, the finite-
memory data is sampled on a logarithmic scale by setting:

J £ |log, (1° — 2) + 1]
toéOandtjéijlforlﬁjSJ

where |.| denote the floor function.

2.3 Prediction function

The desired prediction function maps a feature vector to
a move in R2. Learning such a function from a training
set S is a regression problem for which many well-known
solutions exist, from the most elementary ones — e.g., K-
nearest neighbors regression, kernel ridge regression, sup-
port vector regression — to the most advanced ones — e.g.,
based on deep neural networks. Since comparing all those
approaches is not in the scope of this paper and since we
target real-time learning and prediction, we use one of the
simplest ones. The resulting system may serve as a base-
line for future works and any other regression method may
replace the proposed one in a straightforward way.

We use a K-nearest neighbors (KNN) regression ap-
proach based on a predefined number of neighbors K and

the euclidian distance as the metric d in the feature space.
Learning the regression function fs from the training set
composed of labeled examples S = {(v (¢), 4 (¢)) i\:ﬁwo
simply consists in storing S for further neighbor search.
The KNN regression function is given by the Algorithm 2
and is used at line 11 in Algorithm 1. It first selects indices
(k1,..., ki) of the K nearest neighbors of the current fea-
ture among the feature vectors (v1,...,Vvy,) of the train-
ing set; and then define the predicted move § as the average
of the related moves (g, , ..., 0k, )

Algorithm 2 KNN regression function (fs (v))

Input(s):
training set S = { (v, dk)},ivjl with size Ng
feature vector v
number of neighbors K
distance d in feature space
Output(s): move § € R?

1: find the K-nearest neighbors of v in S as

K
(k1o ki) < arg min
{k1,.skx }C{1,....Ns} ;=1

d(vi,,V)

2: average moves of selected neighbors

1 K
5<—E;5ki

3. EXPERIMENTS AND EVALUATION

Designing an evaluation framework for gesture continua-
tion is a complex topic for which we first raise a number of
issues.

First of all, one should keep in mind the main goal — con-
tinuing subjective gestures with no a priori contents —, even
as an unreachable objective; in particular, one should find
how this can properly make part of an evaluation.

The space of musical gestures with no a priori may have
a complexity much larger than what can be represented in
some training and testing sets, and gathering a represen-
tative and statistically-consistent set of gestures may be a
vain wish. This issue will impact the classical use of a
training set (e.g., for tuning parameters by cross-validation)
as well as the validity of performance assessment on a test-
ing set.

In terms of performance measure, one may not hope for a
well-defined global score available beforehand. One may
even consider it is a too challenging task to evaluate the
quality of a predicted musical gesture by integrating com-
plex aspects like: the intention of the gesture author and his
or her subjective idea of what is a good continuation; dif-
ferences in the audio rendering of various possible gesture
continuations belonging to some kind of equivalence class,
beyond a singular groundtruth gesture. In such conditions,
one may characterize the main evaluation objective by the
following two uncommon statements: the evaluation crite-
ria may vary from one gesture to another; the evaluation
criteria may be established by the performer at the time the
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Figure 2. Initial gesture and two possible continuations for : a random-walk-like gesture (left); a triangle-shape gesture (middle) a periodic motion that
alternates two small circles and a large one (right). The red and green gestures have been generated with the systems with instantaneous features only

(J = 0) and with finite-memory (J = 7), respectively.

gesture is generated so that it may not be known at the time
a continuation system is designed. In such context, one
may develop an a posteriori multi-criteria evaluation and
consider it as a principal evaluation method while usual a
priori evaluation criteria may play a subordinate role.

Hence, the design of an evaluation framework for musi-
cal gesture continuation is an important challenge. We pro-
pose a substantial evaluation section which may be thought
of as a first step in that direction.

Our experimental protocol is based on a corpus of recorded
gesture to be continued. This set has been made with pluric-
ity and maximum variability in mind, combining strong
periodic forms to pseudo-random paths. A first set of 12
gestures was composed of basic geometrical shapes like
circles, triangles, oscillations. A second set of 18 gestures
has been made by a musician who was asked to specifically
focus on the sound result. Gestures are sampled from a 2D
tactile tablet at a rate of 60 points per seconds. The ges-
ture data is sent to a custom sound synthesis software and
stored as textfiles one line per point. Their length varies
between 9.3s and 29.6s, the average being 18.8s.

We first analyze isolated gestures to provide a short a pos-
teriori analysis in section 3.1. We then define an objective
measure for prediction accuracy and apply it to evaluate
the effect of finite-memory features in section 3.2. Finally,
we propose a multicriteria evaluation framework in order
to help the analysis of gesture continuation by pointing out
a set of key evaluation criteria.

3.1 Three notable continuation examples

Figure 2 shows, for three gestures, their continuations by
the proposed system with instantenous features only (J =
0) and with finite-memory features (J = 7, i.e., about 2
seconds). The number of neighbors is fixed to K = 5.
Those example have been chosen to illustrate the ability of
the proposed approach to continue any gesture, as well as
its limitations.

In the case of a gesture with a strong stochastic compo-
nent (example on the left), both continuations show some
ability to generate a similar stochastic behavior. It seems
that finite-memory features help to reproduce a large vari-
ability including spatial spread and temporal cues. One
may notice that short patterns of the initial gesture are lo-
cally reproduced. However, the system does not seem to be
trapped in a loop, which would have had a strong negative
impact on the perceived musical forms. From this point of

view, the evaluation on random-like gestures may be com-
pared to the topic of pseudo-random numbers generation
where one tries to avoid any repetitions or period in the
sequence of generated numbers.

The continuation of quasi-periodic gestures is illustrated
in the other two examples. A recurrent failure case of
the system with instantaneous features only is illustrated
by the triangle-shaped gesture where speed is constant on
edges and is null on corners (the user deliberately stops
its movement for a while at each corner). The system is
trapped in a corner since the K nearest neighbors have null-
speed and the related move is also null. Finite-memory fea-
tures provide information from the current point history to
avoid such problems, as long as that the memory length is
greater than the duration of stops. In the obtained (green)
continuation, one may observe that the system succeeds
in generating triangles, and that they present a variability
similar to that of the original gesture.

Another common challenging situation is crosspoints in
periodic motions, as illustrated in the third example. The
gesture is a repetition of one large circle and two small
circles successively. All three circles are tangent at their
junction point, which generates an ambiguity since at that
point, position, speed and acceleration are similar. Hence,
at that position, the system with instantaneous features only
is not able to determine whether it should enter a large or a
small circle and gets trapped into the small circles here. On
the contrary, the system with finite-memory features uses
history information and is able to generate an alternation
of one large circle and two small circles.

From these examples, one may note how gesture-dependent
the evaluation is. Indeed for each example, specific evalu-
ation criteria have been commented on, based on the prop-
erty of the gesture as well as on the behavior of the system.
This shows the importance of a posteriori evaluation. In
a more synthetic way, one may also conclude from these
examples that the proposed system is able to continue ges-
tures of very different natures and that finite-memory fea-
tures are useful to avoid typical failures. The subsequent
sections will provide an extensive evaluation on this topic.

3.2 Prediction accuracy for various memory sizes

The memory size have a dramatic effect on the prediction
results: one may wonder how large it should be set and
how the system behaves when it varies. We propose to
introduce and use an objective measure to assess the qual-



ity of the prediction at various horizons after the last point
used to learn the gesture. This measure is subsequently
used to analyze the prediction accuracy as a function of
the memory size.

Let us consider a recorded gesture of total length N : for
clarity, p(t) denote the recorded position for 1 < ¢ < N.
We denote by Ny < N a minimum size considered for
training. For a training size NV such that Ny < N < N , the
system is trained on the first NV positions only and for ¢ >
N, p™™)(t) denotes the position predicted by this system
at time ¢. In such conditions, for any n < N-N , position
PWN)(N + n) is the position predicted at a horizon 7 after
the last position N known by the system. We define the
mean prediction error at horizon n, 1 <n < N — Ny, by

o SNk BV + ) = BV + )],

e(n)
N—?’l—No—i—l

3

In other words, for a fixed horizon n, € (n) is the prediction
error averaged among the predictions at horizon n obtained
by training the system on different sizes N of training set,
using the same recorded gesture.

Figure 3 shows the mean error averaged over all the ges-
tures we considered, when fixing the number of neighbors
to K = 5 and and the minimum training size to Ng = %]V
(first two thirds of each gesture). The error increases with
the horizon, since it is harder to make an accurate predic-
tion when the horizon is large. Each curve can be split
into two parts. During a first phase (memory size below
0.5 second), increasing the memory helps decreasing the
error significantly. However, increasing the memory size
beyond 0.5 second does not improve the prediction and
sometimes drives up the error. These two trends (decreas-
ing and then increasing) are found in most of the examples
we considered, with different optimal memory sizes from
one gesture to the other, and show that the proposed system
has a limited capacity to learn from past points.

One may also note that this evaluation measure is not well
suited for some gestures. For instance, if a gesture is made
up of randomness, all possible realizations of this random-
ness are satisfying ways to continue it. As a consequence,
a valid extrapolated gesture might be very far from the ac-
tual continuation made by the user. In this perspective, it
appears useful to introduce other evaluation criteria.

3.3 Multicriteria evaluation

Evaluation may be thought within a multicriteria frame-
work, relying on multiple evidence, by extending the use
of objective performance measures. Since the criteria are
not combined into a single score, this methodology is not
dedicated to learn parameters or to rank concurrent sys-
tems. Generic multiple criteria may be used as a set of
objective features that are automatically generated to help
human interpretation or analysis.

We propose a set a evaluation criteria in order to com-
pare a continued gesture p and a groundtruth continuation
p. The experimental setting consists in splitting each ges-
ture with a ratio (2/3,1/3) so that the first part is used for
learning and is continued by the system to obtain p while
the second part is taken as the groundtruth p for perfor-
mance assessment (p and p having the same length). The
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Figure 3. Mean prediction error averaged over all gestures for several
prediction horizons n, as a function of the memory size J (n and J have
been converted in seconds).

proposed criteria are based on instantaneous features in the
continued gesture: position, speed and acceleration vec-
tors, as well as their norms and angles. In each of those 9
possible cases, the feature of interest is extracted from the
continued gesture p and from the groundtruth p at each
available sample time, resulting in two feature vectors to
be compared.

A first family of criteria aims at analyzing the distribution
of the instantaneous features. Distributions are considered
by building histograms from the coefficients of feature vec-
tors. For each feature, we compare the histogram for the
continued gesture and that of the grountruth using a sim-
ple histogram difference measure, both histograms being
computed on a common support with size N, = 25 bins.
Results are represented in the top part of Figure 4. In order
to separate the gesture trajectory from its dynamics, a sec-
ond family of criteria is proposed, based on dynamic time
warping (DTW). DTW is used to align the continued ges-
ture and the groundtruth, which cancels the effect of possi-
ble time stretching : the obtained distance measure quanti-
fies only the difference in the trajectories, evaluating spa-
tial cues only. Results are denoted by DTW/position in the
middle part of Figure 4. As a possible extension, we also
represent the DTW computed on the vectors of instanta-
neous speed, acceleration and speed norm instead of posi-
tions. Finally, since many gesture have one or several oscil-
lating components — sometimes in position, speed, accel-
eration, and so on —, we also computed the Fourier trans-
form of feature vectors. For each feature, spectra from the
continued gesture and from the groundtruth are compared
using the log-spectral distance and results are presented in
the bottom part of Figure 4.

Results shown in Figure 4 confirm the advantage of finite-
memory features in the proposed continuation system, since
almost all criteria are improved on average. This multicri-
teria framework may also be used to detect gestures that
are not well continued — e.g., by automatically selecting
gestures that are in the higher quartile — in order to draw
a detailed analysis. As not all criteria are of interest for
a given gesture, the performer may select them from this
full dashboard, on a gesture-dependent basis, adopting an
a posteriori evaluation.
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4. CONCLUSION AND PERSPECTIVES

We would like the main conclusion of this paper to be
that the problem of musical gesture continuation, despite
its vague definition, is not a vain or absurd task. To sup-
port this conclusion, we have shown that a system based
basic features and KNN regression is able to continue
any arbitrary gesture in an automatic way. We have also
proposed the guidelines for an evaluation framework, in-
cluding some particular considerations on specific gestures
(null velocity issues, periodic and random components), a
prediction accuracy measure and a large set of multicriteria
objective measures that may be used in an a priori evalu-
ation setting as well as for a posteriori evaluation. Those
elements form preliminary contributions for works on mu-
sical gesture continuation, with several open directions.

The problem setting and the evaluation framework should
go beyond the proposed ideas. 2D gestures may include
multiple strokes generated simultaneously (e.g., by sev-
eral fingers) and sequentially (with arbitrary stops between
strokes). They may also be extended to 3D gestures. The
set of evaluation criteria may be completed by other fea-
tures and comparison measure computed on the gesture it-
self, as well as criteria in the audio domain. This may also
be the opportunity to analyze the relation between gesture
and audio domains. Finally, subjective evaluation should
also be considered and would first require the design of
dedicated test protocols.

The proposed system for gesture continuation may be ex-
tended in some interesting directions. As shown in this
paper, a significant improvement results from the exten-
sion of instantaneous features to finite-memory features.
Adding more features may be even more useful to cap-
ture the right information, using feature selection method
at training time. As a more fundamental issue, one may
design or learn an appropriate distance in the feature do-
main while features are numerous and of different natures.
We think that metric learning approaches would play an
important role in order to have continuation systems that
adapt to each gesture. One may also explore the wide range
of possible non-parametric prediction functions. For in-

stance, hidden Markov models may be successful to model
the time dependencies as well as to control variations from
the reference gesture as in [8].

Is the sky the limit? In many aspects, the problem of mu-
sical gesture continuation raises important questions about
how to go beyond the limits we usually set for prediction
tasks: how to deal with the dilemma of characterizing mu-
sical gestures with no a priori? How to address ill-posed
problems as such? How to design systems when evalua-
tion criteria are not known? Eventually, would such works
be of interest to revisit conclusions from well-established
tasks, as they may be questioned in [9]?
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